УДК 621.791

Кабацкий В. И., Кабацкий А. В.

НИЗКОЛЕГИРОВАННЫЕ ЭЛЕКТРОДЫ ДЛЯ СВАРКИ ЗАКАЛИВАЮЩИХСЯ СТАЛЕЙ

Как известно, одной из главных проблем, возникающих при сварке высокопрочных сталей, является опасность образования холодных трещин в зоне термического влияния сварных соединений («отколов»). Применение для сварки этих сталей подавляющего большинства известных низколегированных электродных материалов проблематично без использования подогрева, и последующей термической обработки сварных соединений. Поэтому повышение стойкости против образования холодных трещин сварных соединений закаливающихся сталей с низколегированными швами является весьма актуальным, особенно в современных условиях недостатка энергоресурсов.

Одним из перспективных путей борьбы с образованием холодных трещин может служить модифицирование металла шва и зоны сплавления сварных соединений [1, 2]. Так, установлено [3], что существенный эффект на стойкость против отколов оказывает модифицирование наплавленного металла азотом и ванадием в сочетании с поверхностно-активными элементами.

В результате проведенных на основании работы [3] исследований осуществлялась разработка электродов с покрытием основного вида, предназначенных для сварки конструкций из закаливающихся сталей.

Целью настоящей работы являлось исследование стойкости против отколов и факторов ее повышения для разработанных низколегированных электродных материалов.

Легирующие и модифицирующие добавки вводились в опытные электроды через электродное покрытие. Электродные стержни выполнялись из низкоуглеродистой сварочной проволоки Св-08А. Азот вводили в металл в составе азотосодержащих ферросплавов (феррохрома 015H1КЛ6, марганца азотированного марки МрН4Б). В качестве поверхностно-активных использовались редкоземельные элементы, которые вводились в электродное покрытие в составе лигатуры ФС30РЗМЗ0.

Исследовались сварные соединения, выполненные ручной дуговой сваркой опытными электродами с покрытием основного вида на сталях 35XM и 25XH3MФA.

Оценку сопротивляемости сварных соединений образованию холодных трещин про- изводили с помощью технологической пробы Теккен. При этом для более полной оценки вариантов фиксировалось время от момента окончания сварки до выхода трещины на поверхность металла. Пробы собирались из пластин размерами $200 \times 150 \times 15$ мм с постоянным зазором 2 мм на участке контрольного шва. Контрольный шов выполнялся испытываемыми электродами диаметром 4 мм в один проход на режиме $I_{\text{св.}}$ = 160–180 A, $U_{\text{д.}}$ = 22–24 B. При отсутствии визуально наблюдаемой трещины после выдержки пробы в течение 48 часов из контрольного шва вырезали темплеты и изготавливали макрошлифы. Окончательное заключение делалось в таком случае после исследования микрошлифов. Каждым вариантом опытных электродов сваривалось 2–3 пробы.

Определение механических свойств наплавленного металла осуществлялось при сварке образцов толщиной 15 мм с V-образной разделкой кромок. Пластины сваривали ручной дуговой сваркой электродами диаметров 4 мм на указанном выше режиме.

Для получения стабильно бездефектных соединений были проведены дополнительные исследования склонности к образованию отколов соединений стали 35XM. При этом

осуществлялось варьирование содержания в наплавленном металле марганца и никеля. В табл. 1 приводится ряд химических составов наплавленного металла, полученного при испытании опытных электродов.

Как показывают испытания, снижение концентраций никеля и марганца приводит к получению соединений, обладающих стабильной сопротивляемостью образованию отколов (вариант 3). Кроме того, установлено, что достаточно высокой трещиностойкости позволяет достичь сочетание в наплавленном металле 0,4–0,5 % марганца и 2,8–3,0 % никеля (вариант 5).

Таблица 1 Варианты расчетных составов наплавленного металла

№	Содержание элемента, %									Наличие трещин в пробе Теккен		Время до появления визуально наблюдаемой	
п/п	С	Mn	Si	Cr	Ni	Mo	V	N	Ce	Визу-	По макро- шлифам	трещины, характер трещины	
1	0,1	1,4– 1,6	0,4– 0,6	0,2- 0,4	1,4– 1,6	0,4– 0,6	0,05- 0,15	0,015- 0,025	(,	Нет Нет	Есть Нет	Надрыв на шлифе –	
2	0,1	0,9– 1,1	0,4– 0,6	0,2- 0,4	0,9– 1,1	0,4– 0,6	0,05- 0,15	0,015- 0,025	расчету)	Нет Есть	Нет -	_ > 24 ч.	
3	0,1	0,2- 0,6	0,4– 0,6	0,4– 0,6	-	0,1- 0,3	0,05- 0,15	0,015- 0,025	оп) %	Нет Нет	Нет Нет	- -	
4	0,1	0,9– 1,1	0,2- 0,4	0,4– 0,5	2,8– 3,0	0,1- 0,2	0,05- 0,15	0,015- 0,025	0,05 9	Есть Нет	– Есть	> 7 ч Надрыв на шлифе	
5	0,1	0,2- 0,6	0,2- 0,3	0,5- 0,6	2,8– 3,0	0,1- 0,2	0,05- 0,15	0,015- 0,025		Нет Нет	Нет Нет	_ _ _	

Электроды обеспечивают наплавленный металл, отвечающий по ГОСТ 9467-80 типу Э55-Э65 типа 10ХМАФ и 10ХНЗМАФ. При сварке стали 35ХМ металл швов имеет химический состав и механические свойства, приведенные в табл. 2 и 3.

Таблица 2 Химический состав металла сварных швов, выполненных разработанными электродами

Металл	Содержание элементов в металле шва, %									
шва	C	Mn	Si	Cr	Ni	Mo	V	N	Ce	
10ХМАФЧ	0,07-	0,2-	0,10–	0,15-	_	0,15-	0,02-	0,025-	0,05-	
(ЭФК – 40)	0,12	0,6	0,45	0,35		0,30	0,10	0,03	0,10	
10ХН3МАФЧ	0,07-	0,2-	0,10–	0,15-	2,8–	0,15-	0,02-	0,025-	0,05-	
(ЭФК – 46)	0,12	0,6	0,45	0,35	3,2	0,30	0,10	0,03	0,10	

Примечание: азот и церий вводятся по расчету и анализом в металле не определяются.

Таблица 3 Механические свойства металла сварных швов

Металл шва	$\sigma_{0,5}$,	$\sigma_{\scriptscriptstyle B}$, $\sigma_{\scriptscriptstyle B}$, $\delta_{\scriptscriptstyle 5}$, ψ , KCU, Дж/с				J, Дж/см ² ,	r ² , при	
Wieranii inba	МПа	МПа	%	%	+ 20 °C	−40 °C	− 60 °C	
10ХМАФЧ (ЭФК–40)	470	620	20	55	102	65	_	
10ХН3МАФЧ (ЭФК–46)	580	670	15,5	66,5	104	53	50	

Испытания разработанных электродов в сравнении с широко используемыми для сварки закаливающихся сталей электродами показали существенное различие в стойкости против образования холодных трещин (табл. 4). При сварке образцов разработанными электродами возникновения холодных трещин в пробах удается избежать без использования подогрева. В то же время при испытаниях с использованием электродов УОНИ, ЦЛ и АНП в сварных соединениях образуются трещины-отколы.

Таблица 4 Стойкость против трещин при сварке различных сталей

Марка	Марка	Температура	Наличие трек	-	Время до появления визуально наблю-	
электрода	стали	подогрева, °C	визуально	по макро- шлифу	даемой трещины, характер трещины	
		_	Есть	_	10 мин.	
УОНИИ	25ХН3МФА	250	Есть	_	1 – 1,5 ч.	
13/55		350	Нет	Нет	_	
	35XM	ı	Есть	Ι	25 мин – по ЗТВ	
ЦЛ – 45	25ХН3МФА	ı	Есть		20 мин – по шву	
ЦЛ — 43	35XM	ı	Есть	ı	40 мин – по ЗТВ	
АНП – 2	25ХН3МФА	-	Есть		5 мин.	
711111 2	35XM	_	Есть	_	10 мин – по шву	
ЭФК – 40, ЭФК – 46	25ХН3МФА	_	Нет	Нет	-	

Металлографические исследования сварных соединений из стали 35XM показали, что швы оптимального состава имеют преимущественно мелкозернистую дезориентированную первичную структуру. Вторичная структура представляет собой дисперсную смесь игольчатых микроструктурных составляющих (очевидно, игольчатого феррита и нижнего бейнита). Это может свидетельствовать о наличии равномерно распределенной нитридной фазы, являющейся центрами активного внугризеренного зарождения структурных составляющих [4, 5].

В зоне термического влияния соединений наблюдается бейнито-мартенситная структура, состоящая, по-видимому, из нижнего бейнита и отпущенного мартенсита. Подтверждением этому могут служить значения микротвердости в 3ТВ, которые составляют в среднем $380 \div 410 \text{ M}\Pi a$.

Результаты проведенных испытаний свидетельствуют о том, что выбранный способ модифицирования позволяет получить достаточно высокие прочностные характеристики

металла шва в сочетании с повышением стойкости против образования трещин в сварном соединении. Изучение структуры наплавленного металла подтверждает, что оптимальное соотношение прочности и стойкости против трещин может быть достигнуто не за счет традиционно используемого упрочнения феррита при легировании его элементами-упрочнителями, а путем образования мелкодисперсной нитридной фазы. Это, по-видимому, приводит к диспергированию первичной структуры, а также к увеличению числа центров зарождения игольчатого феррита [6–8].

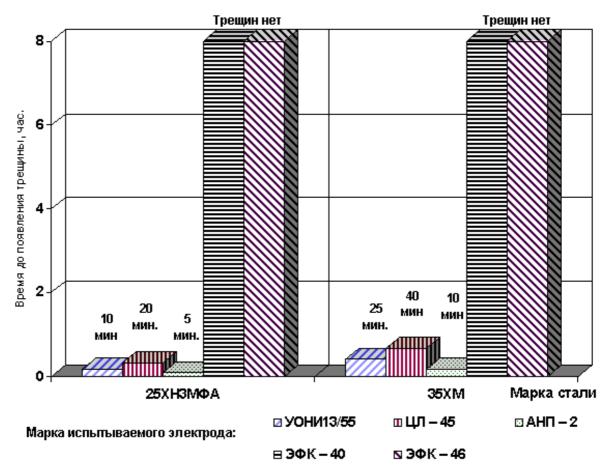


Рис. 1. Диаграмма испытаний разработанных и стандартных электродов

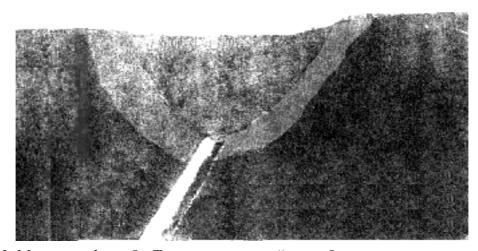


Рис. 2. Макрошлиф пробы Теккен, заваренной разработанными электродами

Введение азота и ванадия в сочетании с активными элементами способствует также изменению морфологии сульфидных включений в зоне сплавления сварного соединения, что, по всей видимости, может благоприятно сказываться на сопротивляемости образованию холодных трещин соединений с низколегированными швами [9].

В настоящее время электроды марки ЭФК-40 прошли промышленную проверку при ремонте крупного литья из стали 35ХМЛ в условиях ЗАО «НКМЗ». По технологии, принятой на предприятии, заварка дефектов серийных изделий производится электродами УОНИ 13/55 с предварительным подогревом и последующей термообработкой изделия. Проверка разработанных электродов осуществлялась без использования предварительного подогрева. Тщательный осмотр изделий в течение всего технологического цикла, в том числе после окончательной термической (закалки с отпуском) и механической обработки показал отсутствие трещин в металле соединений. Полученные результаты позволяют рекомендовать использование разработанных сварочных материалов при изготовлении и ремонте жестких сварных конструкций из закаливающихся сталей.

ВЫВОДЫ

- 1. В результате проведенных исследований были разработаны электроды с покрытием основного вида, предназначенные для сварки конструкций из закаливающихся сталей.
- 2. Испытания разработанных электродов показали, что они обеспечивают существенное повышение стойкости против образования холодных трещин без использования подогрева, в сравнении с широко используемыми для сварки закаливающимися сталями.
- 3. Полученный эффект достигается за счет благоприятного изменения структуры металла и морфологии неметаллических включений в зоне сплавления сварных соединений.
- 4. Результаты промышленной проверки позволяют рекомендовать использование разработанных сварочных материалов при изготовлении и ремонте жестких сварных конструкций из закаливающихся сталей.

ЛИТЕРАТУРА

- 1. Структура и свойства зоны термического влияния сварных соединений высокопрочной стали мартенситного класса / В. И. Кабацкий, В. В. Подгаецкий, Д. П. Новикова и др. // Автоматическая сварка. − 1986. − № 1. − С. 16−20.
- 2. Влияние модифицирования неметаллических включений редкоземельными металлами на структуру и свойства металла шва при сварке высокопрочных сталей / В. Ф. Мусияченко, И. С. Мельник, М. Б. Мовчан и др. // Автоматическая сварка. 1987. N 6. С. 1—6.
- 3. Кабацкий В. И. Влияние модифицирования металла шва на сопротивляемость замедленному разрушению сварных соединений высокопрочных сталей / В. И. Кабацкий, А. В. Кабацкий // Автоматическая сварка. -2004. N = 3. C. 22-26.
- 4. Бабаски Ю. 3. Структура и свойства литой стали / Ю. 3. Бабаски. Киев : Наукова думка, $1980.-240\ c.$
- 5. Ricks R. A. The nature of acicular ferrite in HSLA steel weld metals / R. A. Ricks, P. R. Howell, G. S. Barritte // Jornal of Material Science. -1982. -V. 17. -N 25. -P. 132-140.
- 6. Dolby R. E. The influence of vanadium on the microstructure and toughness of ferritic weld metal a review / R. E. Dolby // Metal construction. $1982. N_2 3. P. 148-153.$
- 7. Плескач В. М. Анализ способов повышения хладостойкости сварных конструкций / В. М. Плескач // Сварочное производство. 1987. N_2 I. C. 14—16.
- 8. Подгаецкий В. В. К вопросу о зарождении игольчатого феррита в сварных швах / В. В. Подгаецкий, Γ . И. Парфессо // Автоматическая сварка. 1991. \mathbb{N} 10. \mathbb{C} . 10—12.
- 9. Кабацкий В. И. Свойства зоны термического влияния сварных соединений высокопрочной стали мартенситного класса со швами различного легирования / В. И. Кабацкий, Г. И. Парфессо, Д. П. Новикова // Технологические основы современного сварочного производства : сб. статей. Краматорск : КИИ, 1992. С. 61–67.